Powered by RND
PodcastsEducaciónLearning Bayesian Statistics

Learning Bayesian Statistics

Alexandre Andorra
Learning Bayesian Statistics
Último episodio

Episodios disponibles

5 de 165
  • #139 Efficient Bayesian Optimization in PyTorch, with Max Balandat
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:BoTorch is designed for researchers who want flexibility in Bayesian optimization.The integration of BoTorch with PyTorch allows for differentiable programming.Scalability at Meta involves careful software engineering practices and testing.Open-source contributions enhance the development and community engagement of BoTorch.LLMs can help incorporate human knowledge into optimization processes.Max emphasizes the importance of clear communication of uncertainty to stakeholders.The role of a researcher in industry is often more application-focused than in academia.Max's team at Meta works on adaptive experimentation and Bayesian optimization.Chapters:08:51 Understanding BoTorch12:12 Use Cases and Flexibility of BoTorch15:02 Integration with PyTorch and GPyTorch17:57 Practical Applications of BoTorch20:50 Open Source Culture at Meta and BoTorch's Development43:10 The Power of Open Source Collaboration47:49 Scalability Challenges at Meta51:02 Balancing Depth and Breadth in Problem Solving55:08 Communicating Uncertainty to Stakeholders01:00:53 Learning from Missteps in Research01:05:06 Integrating External Contributions into BoTorch01:08:00 The Future of Optimization with LLMsThank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode,...
    --------  
    1:25:23
  • BITESIZE | What's Missing in Bayesian Deep Learning?
    Today’s clip is from episode 138 of the podcast, with Mélodie Monod, François-Xavier Briol and Yingzhen Li.During this live show at Imperial College London, Alex and his guests delve into the complexities and advancements in Bayesian deep learning, focusing on uncertainty quantification, the integration of machine learning tools, and the challenges faced in simulation-based inference.The speakers discuss their current projects, the evolution of Bayesian models, and the need for better computational tools in the field.Get the full discussion here.Attend Alex's tutorial at PyData Berlin: A Beginner's Guide to State Space Modeling Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)TranscriptThis is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
    --------  
    20:34
  • #138 Quantifying Uncertainty in Bayesian Deep Learning, Live from Imperial College London
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:Bayesian deep learning is a growing field with many challenges.Current research focuses on applying Bayesian methods to neural networks.Diffusion methods are emerging as a new approach for uncertainty quantification.The integration of machine learning tools into Bayesian models is a key area of research.The complexity of Bayesian neural networks poses significant computational challenges.Future research will focus on improving methods for uncertainty quantification. Generalized Bayesian inference offers a more robust approach to uncertainty.Uncertainty quantification is crucial in fields like medicine and epidemiology.Detecting out-of-distribution examples is essential for model reliability.Exploration-exploitation trade-off is vital in reinforcement learning.Marginal likelihood can be misleading for model selection.The integration of Bayesian methods in LLMs presents unique challenges.Chapters:00:00 Introduction to Bayesian Deep Learning03:12 Panelist Introductions and Backgrounds10:37 Current Research and Challenges in Bayesian Deep Learning18:04 Contrasting Approaches: Bayesian vs. Machine Learning26:09 Tools and Techniques for Bayesian Deep Learning31:18 Innovative Methods in Uncertainty Quantification36:23 Generalized Bayesian Inference and Its Implications41:38 Robust Bayesian Inference and Gaussian Processes44:24 Software Development in Bayesian Statistics46:51 Understanding Uncertainty in Language Models50:03 Hallucinations in Language Models53:48 Bayesian Neural Networks vs Traditional Neural Networks58:00 Challenges with Likelihood Assumptions01:01:22 Practical Applications of Uncertainty Quantification01:04:33 Meta Decision-Making with Uncertainty01:06:50 Exploring Bayesian Priors in Neural Networks01:09:17 Model Complexity and Data Signal01:12:10 Marginal Likelihood and Model Selection01:15:03 Implementing Bayesian Methods in LLMs01:19:21 Out-of-Distribution Detection in LLMsThank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer,...
    --------  
    1:23:10
  • BITESIZE | Practical Applications of Causal AI with LLMs, with Robert Ness
    Today’s clip is from episode 137 of the podcast, with Robert Ness.Alex and Robert discuss the intersection of causal inference and deep learning, emphasizing the importance of understanding causal concepts in statistical modeling. The discussion also covers the evolution of probabilistic machine learning, the role of inductive biases, and the potential of large language models in causal analysis, highlighting their ability to translate natural language into formal causal queries.Get the full conversation here.Attend Alex's tutorial at PyData Berlin: A Beginner's Guide to State Space Modeling Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)TranscriptThis is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
    --------  
    25:28
  • #137 Causal AI & Generative Models, with Robert Ness
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:Causal assumptions are crucial for statistical modeling.Deep learning can be integrated with causal models.Statistical rigor is essential in evaluating LLMs.Causal representation learning is a growing field.Inductive biases in AI should match key mechanisms.Causal AI can improve decision-making processes.The future of AI lies in understanding causal relationships.Chapters:00:00 Introduction to Causal AI and Its Importance16:34 The Journey to Writing Causal AI28:05 Integrating Graphical Causality with Deep Learning40:10 The Evolution of Probabilistic Machine Learning44:34 Practical Applications of Causal AI with LLMs49:48 Exploring Multimodal Models and Causality56:15 Tools and Frameworks for Causal AI01:03:19 Statistical Rigor in Evaluating LLMs01:12:22 Causal Thinking in Real-World Deployments01:19:52 Trade-offs in Generative Causal Models01:25:14 Future of Causal Generative ModelingThank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Marcus Nölke, Maggi Mackintosh, Grant...
    --------  
    1:38:19

Más podcasts de Educación

Acerca de Learning Bayesian Statistics

Are you a researcher or data scientist / analyst / ninja? Do you want to learn Bayesian inference, stay up to date or simply want to understand what Bayesian inference is? Then this podcast is for you! You'll hear from researchers and practitioners of all fields about how they use Bayesian statistics, and how in turn YOU can apply these methods in your modeling workflow. When I started learning Bayesian methods, I really wished there were a podcast out there that could introduce me to the methods, the projects and the people who make all that possible. So I created "Learning Bayesian Statistics", where you'll get to hear how Bayesian statistics are used to detect black matter in outer space, forecast elections or understand how diseases spread and can ultimately be stopped. But this show is not only about successes -- it's also about failures, because that's how we learn best. So you'll often hear the guests talking about what *didn't* work in their projects, why, and how they overcame these challenges. Because, in the end, we're all lifelong learners! My name is Alex Andorra by the way, and I live in Estonia. By day, I'm a data scientist and modeler at the https://www.pymc-labs.io/ (PyMC Labs) consultancy. By night, I don't (yet) fight crime, but I'm an open-source enthusiast and core contributor to the python packages https://docs.pymc.io/ (PyMC) and https://arviz-devs.github.io/arviz/ (ArviZ). I also love https://www.pollsposition.com/ (election forecasting) and, most importantly, Nutella. But I don't like talking about it – I prefer eating it. So, whether you want to learn Bayesian statistics or hear about the latest libraries, books and applications, this podcast is for you -- just subscribe! You can also support the show and https://www.patreon.com/learnbayesstats (unlock exclusive Bayesian swag on Patreon)!
Sitio web del podcast

Escucha Learning Bayesian Statistics, All Ears English Podcast y muchos más podcasts de todo el mundo con la aplicación de radio.es

Descarga la app gratuita: radio.es

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app
Aplicaciones
Redes sociales
v7.23.3 | © 2007-2025 radio.de GmbH
Generated: 8/26/2025 - 6:38:09 AM