#79: La denervación en la lesión medular y la estimulación eléctrica
En este episodio, profundizamos en uno de los fenómenos más devastadores pero menos comprendidos en neurorrehabilitación: la denervación muscular tras una lesión medular. A través de una revisión exhaustiva de la literatura científica y de la experiencia clínica, abordamos qué ocurre realmente con los músculos que han perdido su inervación, cómo se transforman con el tiempo y qué posibilidades tenemos para intervenir. Hablamos sobre neurofisiología, degeneración axonal, fases de la denervación, y cómo la estimulación eléctrica —especialmente con pulsos largos— puede modificar el curso degenerativo incluso años después de la lesión. Exploramos también el Proyecto RISE, los protocolos clínicos actuales y las implicaciones terapéuticas reales de aplicar electroestimulación en músculos completamente denervados. Si trabajas en neurorrehabilitación o te interesa la ciencia aplicada a la recuperación funcional, este episodio es para ti.
Referencias del episodio:
1. Alberty, M., Mayr, W., & Bersch, I. (2023). Electrical Stimulation for Preventing Skin Injuries in Denervated Gluteal Muscles-Promising Perspectives from a Case Series and Narrative Review. Diagnostics (Basel, Switzerland), 13(2), 219. https://doi.org/10.3390/diagnostics13020219 (https://pubmed.ncbi.nlm.nih.gov/36673029/).
2. Beauparlant, J., van den Brand, R., Barraud, Q., Friedli, L., Musienko, P., Dietz, V., & Courtine, G. (2013). Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain : a journal of neurology, 136(Pt 11), 3347–3361. https://doi.org/10.1093/brain/awt204 (https://pubmed.ncbi.nlm.nih.gov/24080153/).
3. Bersch, I., & Fridén, J. (2021). Electrical stimulation alters muscle morphological properties in denervated upper limb muscles. EBioMedicine, 74, 103737. https://doi.org/10.1016/j.ebiom.2021.103737 (https://pubmed.ncbi.nlm.nih.gov/34896792/).
4. Bersch, I., & Mayr, W. (2023). Electrical stimulation in lower motoneuron lesions, from scientific evidence to clinical practice: a successful transition. European journal of translational myology, 33(2), 11230. https://doi.org/10.4081/ejtm.2023.11230 (https://pmc.ncbi.nlm.nih.gov/articles/PMC10388603/).
5. Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364 (Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364).
6. Carlson B. M. (2014). The Biology of Long-Term Denervated Skeletal Muscle. European journal of translational myology, 24(1), 3293. https://doi.org/10.4081/ejtm.2014.3293 (https://pubmed.ncbi.nlm.nih.gov/26913125/).
7. Carraro, U., Boncompagni, S., Gobbo, V., Rossini, K., Zampieri, S., Mosole, S., Ravara, B., Nori, A., Stramare, R., Ambrosio, F., Piccione, F., Masiero, S., Vindigni, V., Gargiulo, P., Protasi, F., Kern, H., Pond, A., & Marcante, A. (2015). Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future. European journal of translational myology, 25(2), 4832. https://doi.org/10.4081/ejtm.2015.4832 (https://pubmed.ncbi.nlm.nih.gov/26913148/).
8. Chandrasekaran, S., Davis, J., Bersch, I., Goldberg, G., & Gorgey, A. S. (2020). Electrical stimulation and denervated muscles after spinal cord injury. Neural regeneration research, 15(8), 1397–1407. https://doi.org/10.4103/1673-5374.274326 (https://pubmed.ncbi.nlm.nih.gov/31997798/).
9. Ding, Y., Kastin, A. J., & Pan, W. (2005). Neural plasticity after spinal cord injury. Current pharmaceutical design, 11(11), 1441–1450. https://doi.org/10.2174/1381612053507855 (https://pmc.ncbi.nlm.nih.gov/articles/PMC3562709/).
10. Dolbow, D. R., Bersch, I., Gorgey, A. S., & Davis, G. M. (2024). The Clinical Management of Electrical Stimulation Therapies in the Rehabilitation of Individuals with Spinal Cord Injuries. Journal of clinical medicine, 13(10), 2995. https://doi.org/10.3390/jcm13102995 (https://pubmed.ncbi.nlm.nih.gov/38792536/).
11. Hofer, C., Mayr, W., Stöhr, H., Unger, E., & Kern, H. (2002). A stimulator for functional activation of denervated muscles. Artificial organs, 26(3), 276–279. https://doi.org/10.1046/j.1525-1594.2002.06951.x (https://pubmed.ncbi.nlm.nih.gov/11940032/).
12. Kern, H., Hofer, C., Mödlin, M., Forstner, C., Raschka-Högler, D., Mayr, W., & Stöhr, H. (2002). Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artificial organs, 26(3), 216–218. https://doi.org/10.1046/j.1525-1594.2002.06933.x (https://pubmed.ncbi.nlm.nih.gov/11940016/).
13. Kern, H., Salmons, S., Mayr, W., Rossini, K., & Carraro, U. (2005). Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle & nerve, 31(1), 98–101. https://doi.org/10.1002/mus.20149 (https://pubmed.ncbi.nlm.nih.gov/15389722/).
14. Kern, H., Rossini, K., Carraro, U., Mayr, W., Vogelauer, M., Hoellwarth, U., & Hofer, C. (2005). Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. Journal of rehabilitation research and development, 42(3 Suppl 1), 43–53. https://doi.org/10.1682/jrrd.2004.05.0061 (https://pubmed.ncbi.nlm.nih.gov/16195962/).
15. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., & Zampieri, S. (2010). One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurological research, 32(1), 5–12. https://doi.org/10.1179/174313209X385644 (https://pubmed.ncbi.nlm.nih.gov/20092690/).
16. Kern, H., & Carraro, U. (2014). Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy. European journal of translational myology, 24(1), 3296. https://doi.org/10.4081/ejtm.2014.3296 (https://pmc.ncbi.nlm.nih.gov/articles/PMC4749003/).
17. Kern, H., Hofer, C., Loefler, S., Zampieri, S., Gargiulo, P., Baba, A., Marcante, A., Piccione, F., Pond, A., & Carraro, U. (2017). Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurological research, 39(7), 660–666. https://doi.org/10.1080/01616412.2017.1314906 (https://pubmed.ncbi.nlm.nih.gov/28403681/).
18. Kern, H., & Carraro, U. (2020). Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel, Switzerland), 10(8), 529. https://doi.org/10.3390/diagnostics10080529 (https://pubmed.ncbi.nlm.nih.gov/32751308/).
19. Ko H. Y. (2018). Revisit Spinal Shock: Pattern of Reflex Evolution during Spinal Shock. Korean journal of neurotrauma, 14(2), 47–54. https://doi.org/10.13004/kjnt.2018.14.2.47 (https://pubmed.ncbi.nlm.nih.gov/30402418/).
20. Mittal, P., Gupta, R., Mittal, A., & Mittal, K. (2016). MRI findings in a case of spinal cord Wallerian degeneration following trauma. Neurosciences (Riyadh, Saudi Arabia), 21(4), 372–373. https://doi.org/10.17712/nsj.2016.4.20160278 (https://pmc.ncbi.nlm.nih.gov/articles/PMC5224438/).
21. Pang, Q. M., Chen, S. Y., Xu, Q. J., Fu, S. P., Yang, Y. C., Zou, W. H., Zhang, M., Liu, J., Wan, W. H., Peng, J. C., & Zhang, T. (2021). Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Frontiers in immunology, 12, 751021. https://doi.org/10.3389/fimmu.2021.751021 (https://pubmed.ncbi.nlm.nih.gov/34925326/).
22. Schick, T. (Ed.). (2022). Functional electrical stimulation in neurorehabilitation: Synergy effects of technology and therapy. Springer. https://doi.org/10.1007/978-3-030-90123-3 (https://link.springer.com/book/10.1007/978-3-030-90123-3).
23. Swain, I., Burridge, J., & Street, T. (Eds.). (2024). Techniques and technologies in electrical stimulation for neuromuscular rehabilitation. The Institution of Engineering and Technology. https://shop.theiet.org/techniques-and-technologies-in-electrical-stimulation-for-neuromuscular-rehabilitation
24. van der Scheer, J. W., Goosey-Tolfrey, V. L., Valentino, S. E., Davis, G. M., & Ho, C. H. (2021). Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. Journal of neuroengineering and rehabilitation, 18(1), 99. https://doi.org/10.1186/s12984-021-00882-8 (https://pubmed.ncbi.nlm.nih.gov/34118958/).
25. Xu, X., Talifu, Z., Zhang, C. J., Gao, F., Ke, H., Pan, Y. Z., Gong, H., Du, H. Y., Yu, Y., Jing, Y. L., Du, L. J., Li, J. J., & Yang, D. G. (2023). Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Frontiers in nutrition, 10, 1099143. https://doi.org/10.3389/fnut.2023.1099143 (https://pubmed.ncbi.nlm.nih.gov/36937344/).
26. Anatomical Concepts: https://www.anatomicalconcepts.com/articles